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4 Poisson Processes

4.1 Definition

Consider a series of events occurring over time, i.e.

(i) XX X~ - —=X> Time
Define T; as the time between the (i — 1)** and i*" event. Then
S, =T, +To+...+T, = Time to nt" event.

Define N (¢) = no. of events in (0, ¢].
Then

P{S, >t} = P{N(t) < n}

If the time for the n'" event exceeds ¢, then the number of events in (0, ¢]
must be less than n.
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P{S, >t} = P{N(t) < n}

pe(n) = P{N(t) =n} =P{N(t)<n+1}— P{N(t) <n}
= P{Sn41 >t} — P{S, >t}
where S,, =T11+15+...+7T,.

Define Qn11(t) = P{Snt+1 > t}, Qn(l) = P{Sn >t}
Then we can write
pe(n) = Qni1(t) — Qn(?)

and taking LaPlace transforms

ps(n) = Qni1(s) — Q7 (s)
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If ¢,11(¢) and q,,(¢) are respective pdf’s.

Q) = Il e ) - L

and

p(n) = 1 — qrz+1(5) B 1 — Z;(S) _ G () _Sq;+1(5)

Recall 77 1s time between 0 and first event, 75 is time between first and
second event, etc.
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Assume {T;} ¢ = 1,2,... are independent and with the exception of
i = 1, are identically distributed with pdf ¢(¢). Also assume T} has pdf
q1(t). Then

() = 61 (5)la*(5)]", @3(5) = ai ()" ()"

_ Q;;(S) o q;;—}—l(s) _ qik (S)q*(s)n—l

ps(n) p

Note that ¢, (¢) is a forward recurrence time. Hence

. 1 —q*(s
() = (s)
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Assume q(t) =Xe M fort>0 (m=1/\)

=0 otherwise.

Then g¢*(s) = A/A+s, 1_6‘81*(8) = 1/(A+s)

\ n—1 1 2 1 n—+1
and p¥(n) = ()\+3> ()\+s) A= X()\/)\"—S) .

pi(n) = /A + )™

However (/X + s)"*1 is the LaPlace transform of a gamma distribution
with parameters (A, n + 1) i.e.

G—At()\t)n+1—1)\

fort > 0
I'(n+1)

ft) =
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6—)\75 ()\t)n
n!

L pi(n) = L7Hpi(n)} =

which is the Poisson Distribution. Hence N (¢) follows a Poisson
distribution and

P{N(t) <n} = ipt(r) = P{S, >t}

P(S, > 1) = C "

r!
r=0

We have shown that if the times between events are iid following an
exponential distribution the N () is Poisson with E[N(t)] = At.
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Alternatively if N(¢) follows a Poisson distribution, then S,, hasa
6—>\t()\t)n—1)\
'(n)

This implies time between events are exponential.

gamma distribution with pdf f(¢) = fort > 0.

Since P{S,, >t} = P{N(t) < n} we have proved the identity

—)\t )\t n— 1)\ n—1 6_>‘t()\t)r

P{S, >t} = / e =3

This identity is usually proved by using integration by parts.

When N (t) follows a Poisson distribution with [N (¢)] = At, the
set {N(t),t > 0} is called a Poisson Process.
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4.2 Derivation of Exponential Distribution

Define P, (h) = Prob. of n events in a time interval h

Assume
Py(h) =1—=Xh+o(h); Pi(h)=Ah+o(h); P,(h)=o0(h) forn >1
Y(h)

where o(h) means a term (k) so that }Llr% = 0. Consider a finite

time interval (0, ¢). Divide the interval into n sub-intervals of length h.
Then t = nh.

t =nh

The probability of no events in (0, t) is equivalent to no events in each
sub-interval; i.e.

P,{T >t} = P{noeventsin (0,t)}

T = Time for 15¢ event
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Suppose the probability of events in any sub interval are independent of
each other. (Assumption of independent increments.) Then

PAT >ty =[1 - M+ o(h)]" = [1 - % +o(h)]"

= (1 — %)”—kno(h)(l— %)n_l + ...

At
i 1 — n o __ — At
im ( — " =e

t
lim no(h) = }lbin% ﬁa(h) =0

We have P{T >t} = lim P, {T' >t} = e M,

. Thepdfof T is —%P{T >t} = Xe” . (Exponential Distribution)




4.3 Properties of Exponential Distribution

q(t) = Ne t>0

E(T)=1/A=m, V(t)=1/\% =m?
q*(s) = A/A+s
Consider r < t.

Then
P{T > r +t|T > r} = Conditional distribution

_Qlr+1t) e M) PRV

Q(r) e
le. P{T >r+t|T >r}=P{T >t} forall randt.
Also P{T >r+t} = e ANt = Q(r)Q(t) = Q(r + 1)
Exponential distribution is only function satisfying Q(r +1t) = Q(r)Q(t)
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1 1
—
n n

Since Q(1)t = et1°2 @) we have log Q(1) is the negative of the rate
parameter. Hence

Q(t) =e * where A = —log Q(1).
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a. Normalized Spacings

Let {T;}i=1,2,...,n beiid following an exponential distribution with
E(T;) =1/

Define Ty <Tp < ... < Ty Order statistics

Then the joint distribution of the order statistics is

f(t(l), b)), - ,t(n))dt(l), b2, -tn) = P{t(l) < T(l), < t(l)—i—dt(l), e

n!
.. 1
= nlhe M XeTM@ L e MOy L. L dEy

f(t(1>, Ce ,t(n)) — n!)\ne_AZ?f bty — n!)\ne—)\S

where S = Zt(i) — Zti, 0< t(1> < ... < t(n)
1 1
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nIAe™ 5 0 < gy < .. <ty

>t
1

Consider
Zy =0Ty, Zy=(n—1) T —Tay), -,
Zay = =i+ D)(Tu = Ta-1), - 2y = Tin) = Tin-1)-
We shall show that { Z; } are iid exponential.

8(75(1), - ,6t(n))

L1,22,. .. L) = N
f(Z1,2a,... Zn) = f(ta) tm)) NZvy..., Zy)

8(t(1>, . ,t(n)>

IS the determinant of the Jacobian.
OZ1,...,Zy)

where
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We shall find the Jacobian by making use of the relation

O(t(1y, - ,5t<n))| _ ‘(9(21722»---271) B
(9(21,... ,Zn) 0t(1)7 7t(n))

Zi=(n—1i+ 1)(T(7;) — T(i—l))7 T(()) =0

/

n—i+1 j=i

—(n—14+1) j=i—-1

0 Otherwise

\
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Note: The determinant of a trangular matrix is the product of the main
diagonal terms

‘a(zl,...,zn)

=nn—1)(n—-2)...2-1=nl!
5(t<1>,---,t(n))| ( ) )

The spacings Z; = (n — ¢+ 1)(T(;) — T(;—1)) are sometimes called
normalized spacings.
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Homework:

1. Suppose there are n observations which are iid

exponential (7; = 1/X). However there are r» non-censored observations
and (n — r) censored observations all censored at ¢ ...

Show Z; = (n — i+ 1)(T;) — T(i—1y) fori=1,2,... rareiid
exponential.

2. Show that

and prove

Find variances and covariances of {7(;) }.
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b. Campbell’s Theorem

Let {N(¢),t > 0} be a Poisson Process. Assume n events occur in the
interval (0, ¢]. Note that N (¢) = n is the realization of a random variable

and has probability P{N(t) = n} = e~ ‘(At?
n.

Define W,, = Waiting time for nt" event.

If {T;}i=1,2,...,n are the random variables representing the time
between events

n
1t7l

Flt1, .. otn) =M Ae M = 2\ A2

But Zti = W,,, hence
1

fltr, ... ty) = Ate Mn
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fltr, ... tn) = At MWn

Now consider the transformation

Wi=t1, Wo=t1+ta,..., Wo=t1+ta+...4+1,

The distribution of W = (W1, W, ... ;W) Is

d(t) | . . .
where @ IS the determinant of the Jacobian.
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and | —==% =1

oW ot
flwy,... ,wn):)\”e_M’“ O<w <...<w, <t.

0<t)‘ _|ow) |

But there are no events in the interval (w,,, t]. This carries probability
e~ At=wn) Hence the joint distribution of the W is

f(w) _ )\ne—)\wn . e—A(t—wn) _ )\ne—)\t
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f(ﬂ):)\”e_)‘t O<w <w <...<w, <t

Consider

)\ne—)\t
e ()™ /n!

f(WIN(t) =n) = = nl/t".

This is the joint distribution of the order statistics from a uniform
e 1
(0, t) distribution; i.e., f(x) = p 0<z<t.

it
Hence E(W;|N(t) =n) = =1,2,...,
(WilN(t) =n) = ——— i n
We can consider the unordered waiting times, conditional on N(t) = n,

as following a uniform (0, ¢) distribution.
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Sincewlztl, Wy =11 +to,..., Wy =11 +la+...+1,
tz' = W; — W;-1 (’UJ() :O)

The difference between the waiting times are the original times ¢;. These
times follow the distribution conditional on N (t) = n; i.e.

f(t1,... , ty|N(t) =n) =nl/t"

Note that if f(¢;) =1/t 0 < t; <t, the joint distribution

fori =1,2,...,n of nindependent uniform (0,¢) random variables

s f(t) = 1/t". If 0 < t(q) <tp) < ... <ty < tthe distribution of the
order statistics Is

f(t(l), - ,t(n)) = n!/t"
which is the same as f(t1,... ,t,|N(t)).
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c. Minimum of Several Exponential Random Variables

Let7; (¢ =1,... ,n) beind. exponential r.v. with parameter \; and let
T = min(Tl, ce ,Tn)

— P{T>t}:P{T1>t,T2>t,...,Tn>t}:7T;L:1P{TZ'>t}

n
- mn —)\it . — )\t _
1

— 1" Is exponential with parameter A
P{T >t} =e M

T = min(Ty,...,T,)

If all )\Z = )\0, A\ = n)\()’ P{T > t} — e—nAOt
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Define N as the index of the random variable which is the smallest failure
time.

For example if T;. < T; forall 7, then N = r.

Consider P{T > t, T, < T;alli} = P{N =r,T >t}

P{N=rT>t\=P{T>t,T; >T.i#r}

- [ T P(T > i A | ) ()L

oo
— / e_(A_AT)tTAre_)\Ttrdtr
t
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Ar
P{N =r,T >t} = Te_’\t

A
P{N=rT>0}=P{N=r}=75)\

— |P{N =r,T >t} = P{N = r}P{T > t}

— N (index of smallest) and 7" are independent

If \; = o

Ao 1

(All populations have the same prob. of being the smallest.)
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D. Relation to Erlang and Gamma Distribution

ConsiderT' =Ty + ...+ 1T,

Since ¢; (s) = SV qgr(s) =

which is L.T. of Erlang distribution. If A; are all distinct

n N )\7,
Q(t):;z‘lz‘e Ait ’Ai:HAj_)\z’

JFi
S

Gamma Distribution
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E. Guarantee Time

Consider the r.v. following the distribution having pdf

q(t) =X =G fort > G

=0 fort < dd

The parameter G is called a guarantee time
If the transformation Y = 7" — G is made then f(y) = \e=?Y for y > 0.
L EY)=1/N, V(Y)=1/)2 ...

: 1
Since T =Y + G, E(T):XJFG

and central moments if 7" and Y are the same.
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F. Random Sums of Exponential Random Variables

Let {T;}i=1,2,...,N beiid with f(¢) = Ae~*! and consider
Sn=T1+To+...+ TN
with P{N =n} = p,.

The Laplace Transform of Sy is| (A/X + s)™ | for fixed N = n. Hence

N
f*(s)=F (%ﬂ) resulting in a pdf which is a mixture of gamma

distributions.

n—le—)\t
) = >,

n=1
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Suppose p, = p"1q n=1,2,... (negative exponential distribution)

= Sy=T1+To+...+ Ty, P{N=n}=p""q

has exponential distribution with parameter (\q).




4.4 Counting Processes and the Poisson Distribution

Definition: A stochastic process {N(t),T > 0} is said to be a counting
process where N (¢) denotes the number of events that have occurred in
the interval (0, ¢]. It has the properties.

(i) N(t) is integer value
(i) N(t) >0

(i) Ifs<t, N(s) < N(t) and N(t) — N(s) = number of events
occurring is (s, t].
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A counting process has independent increments if the events in disjoint

Intervals are independent; i.e. N(s) are N(t) — N(s) are independent
events.

A counting process has stationary increments if the probability of the
number of events in any interval depends only on the length of the
Interval; 1.e.

N(t)and N(s+t) — N(s)

have the same probability distribution for all s. A Poisson process

IS @ counting process having independent and stationary

Increments.
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TH. Assume {N(¢),t > 0} is a Poisson Process. Then the dsitribution of
Ns(t) = N(s+t) — N(s) isindependent of s and only depends on the
length of the interval, i.e.

P{N(t+s)— N(s)|N(s)} = P{N(t+s)— N(s)}

for all s. This implies that knowledge of N(u) for 0 < u < s is also
irrelevant.

P{N(t+s) — N(s)|N(u),0 < u < s}
= P{N(t+s) — N(s)}.

This feature defines a stationary process.
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TH. A Poisson Process has independent increments.

Consider 0 < t; <ty < t3 < 14

A Vs A Vs
£\ £\ £\

t1 to ts ty

Consider events in (s, t4]; 1.e.

N(ts) — N(t3)

P{N(t4) —N(tg) | N(U), 0<’U,§t3}
_ P{N(ts) — N(ts)}.

Distribution is independent of what happened prior to ¢5. Hence if the
Intervals (¢1,t2] and (¢2, t4) are non-overlapping
N(t2) — N(t1) and N(t4) — N(t3) are independent.
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TH. Cov(N(t), N(s+t)) = At (Poisson Process)

Proof N(s+t) — N(t) is independent of N(¢)
Cov(N(s+t)— N(t),N(t)) =0
= Couv(N(s+1t),N(t)) (N(t)) =0

7
. Cou(N(s +1),N(t)) = V(N(t)) = At

as variance of N(t) is At.

An alternative statement of theorem is

Cov(N(s),N(t)) = A min(s,t)
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TH. A counting process { N(t),t > 0} is a Poisson Process if and only if
(1) It has stationary and independent increments

(ii) N(0) = 0 and

PIN(h) =0} =1— M+ 0(h)
P{N(h) =1} = \h+0(h)
P{N(h) =3} =0(h), j>1

Notes: The notation O(h) “little o of h’ refers to some function (k) for
which

. p(h)
lim T/ —
hli% h 0

Divide interval (0, ¢] into n sub-intervals of length h; i.e. nh = ¢

P{N(kh) — N(k — 1)h)} = P{N(h)}
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T'" = Time to event beginning at ¢t = 0.
P{T >t} = P{N(t) =0} = P{No events in each sub-interval }
P{N(t)=0} =P{T >t}=[1—Ah+o(h)]"

= (1 —=MXh)" +n(1 —Xh)"to(h) + o(h?)

B - n o(h)
= (1 — \h) {1+1—)\h+”'}

AN t  o(h)
=(1-= 1
( n) { +1_2t ot

— e Masn—oo, h—0

= P{T >t} =ec "

Hence 1" is exponential; 1.e. Time between events is exponential.

= {N(t),t > 0} is Poisson Process
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4.5 Superposition of Counting Processes

Suppose there are k counting processes which merge into a single
counting process; e.g. k£ = 3.

Process 1: X

Process 2:

Process 3: A

Merged Process: RK—HK—X

The merged process is called the superposition of the individual counting
processes

N() = Ni(t) + No(t) 4 ... + Nu(t)
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A. Superposition of Poisson Processes

N(t) = Ni(t) + ...+ Ng(t)
Suppose {N;(t),t >0} ¢=1,2,..., k are Poisson Processes with
E[N;(t)] = A\t.

Note that each of the counting processes has stationary and independent
Increments.

Also N(t) is Poisson with parameter

k k
E(N(t) =) (At)=th, A=) X

1=1

= N(t) is a Poisson Process

Hence {N(t¢),t > 0} has stationary and independent increments.

193



B. General Case of Merged Process

Consider the merged process from £ individual processes

X

X < V>
Merged Process: K—HK—X X X %

The random variable V. is the forward recurrence time of the merged
process. We will show that as £ — oo, the asymptotic distribution of V is
exponential and hence the merged process iIs asymptotically a Poisson
Process.

Assume that for each of the processes

e Stationary
e Multiple occurences have 0 probability
e pdf between events of each process is ¢(t).
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If ¢(¢) is pdf of time between events for a single process, then each has
the same forward recurrence time distribution with pdf

qr(x) = Qx)/m

With k& independent processes there will be
T¢(1),T¢(2),...,Tf(k) forward recurrence time random variables

Process 1: X

Process 2:

Process k:

Merged Process: A m—a
Vk — min(Tf(l), Tf(2), .o ,Tf(k))
P{Vk > U} = Gk(v) = P{Tf(l) > ’U,Tf(Q) > U, ... ,Tf(k}) > U}
= Qy(v)"
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Gr(v) = P{Vi > v} = Q(v)* where

Q)= [ as@de, a@

Let gx(x) = pdf of merged process
Guv) = [ w)dn = Qs0)"

gr(v) = kQy(v)* gz (v)

r—1 Q)

m

gr(v) = kQy(v)
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: . Vi
Consider transformation z = — —
m/k

oV
gk (v) 9 =

For fixed z,

as k — oo, %—N) and Q
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Thus as £ — oo, the forward recurrence time (multiplied by

7) z = 7V}, Is distributed as a unit exponential distribution. Hence for
large k, V), = %z has an asymptotic exponential distribution with
parameter A = k/m. Since the asymptotic forward recurrence time is
exponential, the time between events (of the merged process), Is
asymptotically exponential.
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Note: A forward recurrence time is exponential if and only if the time
between events is exponential; ie.

— e M if Q(zr) = e AT

and if q]v( ) — e M = Q(CB) — AT

k
Additional Note: The merged process is N (t) = ZNi(t). Suppose
1=1

FE(N;(t)) = vt. Units of v are “no. of events per unit time”
The units of m are “time per event”

Thus E(N(t)) = (kv)t and (kv) is mean events per unit time. The units

1 : :
of (k_) or (+) is “mean time per event”. Hence m = 1/v for an
1%

individual process and the mean of the merged process is 1/kv.

Ex. v = 6 events per year = m = 2 = 2 months (mean time between

6
events).

199



5. Splitting of Poisson Processes

Example: Times between births (in a family) follow an exponential
distribution. The births are categorized by gender.

Example: Times between back pain follow an exponential distribution.
However the degree of pain may be categorized as the required
medication depends on the degree of pain.

Consider a Poisson Process { N (t),t > 0} where in addition to observing
an event, the event can be classified as belonging to one of r possible
categories.

Define N;(t) = no. of events of type i during (0,¢] fori =1,2,... ,r

= |N(t) = N1(t) + Na(t) + ...+ N,-(t)
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This process is referred to as “splitting” the process.

Bernoulli Splitting Mechanism

Suppose an event takes place in the interval (¢, + dt|. Define the
indicator random variable Z(t) =i (i = 1,2,... ,7) such that

P{Z(T) = ileventat (t,t + dt|} = p;.

Note p; Is independent of time.

Thenif N(t) = Z N;(t) the counting processes {N;(t),t > 0} are
1=1

Poisson process with parameter (Ap;) for ¢ =1,2,... ,r.
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Proof: Suppose over time (0, t], n events are observed of which s; are
classified as of time ¢ with >~/ _, s; = n.

P{Nl(t) = Sl,NQ(t) — S592,... ,Nr(t> = ST|N(t) = n}

n! 51 s

Sr
= pIitps .. p
silsol. . g1 L2 "

Hence P{N;(t) =s;,i=1,... ,rand N(t) = n}

n! e M (A"
- b

i=1 9%

n!

H P{N;(t) = s;}

which shows that the {V;(¢)} are independent and follow Poisson
distributions with parameters { \p; }.

= {N,(t),t > 0} are Poisson Processes.
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Example of Nonhomogenous Splitting

Suppose a person is subject to serious migraine headaches. Some of these
are so serious that medical attention is required. Define

no. of migraine headaches in (0, ¢]
no. of migraine headaches requiring medical attention

p(7) = prob. requiring medical attention if
headache occurs at (7, 7 + d7).

Suppose an event occurs at (7, 7 + d7); then Prob.of requiring
attention = p(7)dr.

Note that conditional on a single event taking place in (0, ¢|, 7 is uniform
over (0, t]; i.e.

f(rIN(t)=1)=1/t 0<7<t and a:%/Otp(T)dT
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4.7 Non-homogeneous Poisson Processes

Preliminaries

Let N(¢) follow a Poisson distribution; i.e.
P{N(t) =k} = e M (\t)* /k!

Holding ¢ fixed, the generating function of the distribution is

qu(t)( ) — E[e—sN(t)] _ Z e_At()\t)ke_Sk

k!
k=0

0O k
)t (es)‘t) Xt e St
= e X = e e
k=0 |

¢N(t) (S) _ 6)\15[6_3—1] _ e)xt(z—l) if »— ¢S

Themeanis E[N(t)] = At
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Consider the Counting Process { N (¢),t > 0} having the Laplace
Transform

(*) Do) (5) = MO =1 = AD)[-1]

=  E[N®)] =At), PIN(t) =k} =e O [A@#)]F/E]

For the Poisson Process A(t) = At and the mean is proportional to .
However when E[N (t)] # At we call the process { N (¢),t > 0} a

non-homogenized Poisson Process and | E(N(t)] = A(t)

A(t) can be assumed to be continuous and differentiable

d Fon
CA() = () = A(t),

The quantity A\(¢) is called intensity function. A(¢) can be represented by
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If N (¢) has the Transform given by (x) then

P{N(t) =k} = e MOA(t)* /!

Since P{S,, >t} = P{N(t) < n}
We have P{S; >t} = P{N(t) <1} = P{N(t) =0}

P(Sl > t) — G_A(t)

Thus pdf of time between events is

F(t) = At)e Jo M@z p(3) = / t)\(x)d:c

Note that if H = A(t), then H is a random variable following a unit
exponential distribution.
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Assume independent increments; i.e. N(t+ ) — N(u) and N () are
Independent

L.T. Transform | (2,t) = eAO=—1]

Generating function = Ele VW] = F[zN®)]

eA(t—i—u)(z—l) _ E[ZN(t—i—u)] _ E[ZN(t—i—u)—N(u)—l—N(u)]

- E[ZN(HU)—N(U)] . E[zN (W]
= et (Wlz—1]

eA(t—l—u)(z—l)

_ N(t+u)—N(u)]]
Y= Elz | = oA(u)(z—1)

At —Aw)][z—1]

where A(t + u) — A(u)

P{N(t +u) — N(u)

k!
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Axiomatic Derivation of
Non-Homogenized Poisson Distribution

Assume counting process { N (t),t > 0}

(i) N(0) =0
(i) {N(t),t > 0} has independent increments; i.e. N(t 4+ s) — N(s)
and N (s) are independent

(ilf) P{N(t+ h) = k|N(t) = }
P{N({t+h)=k+1|N(t) =

P{N(t—i—h):k—l—ﬂN(t):
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4.8 Compound Poisson Process

Example. Consider a single hypodermic needle which is shared. The
times between use follow a Poisson Process. However at each use, several
people use it. What is the distribution of total use?

Let {N(¢),t > 0} be a Poisson process and {Z,,,n > 1} be iid random

variables which are independent of N (t). Define

N(t)

Z(t) =Y Zn

The process Z(t) is called a Compound Poisson Process. It will be
assumed that {Z,, } takes on integer values.
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= Z¢(S\N(t) =

—Z ooy T _ g (TN

!
r=0

o~ MG AT($)A _ | o= At(1—A*(s))

2
E(G_SZN):l—Sml—l—%mQ—l-...

= —\t[smq — %mz + ...




Cumulant function = K (s) = log ¢(s)
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