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5. General Renewal Processes

5.1 Asymptotic Distribution

Event Times: Ti are iid r.v. with pdf q(t) and Q(t) =

∫

∞

t

q(x)dx

N(t) = No. of events in (0, t]

Sn = T1 + T2 + ... + Tn time to nth event

Assume E(Ti) = m, V (Ti) = σ2

P{Sn > t} = P{N(t) < n}

Question: What is distribution of N(t) as t → ∞. To find asymptotic
distribution n must be allowed to “grow” as t becomes large. Define nt to
depend on t. Then

P{Snt
> t} = P{N(t) < nt}

and we wish to evaluate the above as t → ∞.
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P{Snt
> t} = P{N(t) < nt}

Find lim
t→∞

P{Snt
> t} = lim

t→∞

P{N(t) < nt}

By Central limit theorem

Snt
− ntm

σ
√

nt
∼ N(0, 1) as nt → ∞

P{Snt
> t} = P

{

Y >
t − ntm

σ
√

nt

}

→ Q

(

t − ntm

σ
√

nt

)

as nt → ∞

where Q(z) =

∫

∞

z

e−x2/2

√
2π

dx

Let nt =
t

m
+ yσ

√

t/m3

Then t − ntm = t − m

[

t

m
+ yσ

√

t/m3

]

= −yσ
√

t/m
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t − ntm

σ
√

nt
=

−y
√

t/m
{

t
m

[

1 + yσ/
√

tm
]}1/2

=
−y

[

1 + yσ/
√

tm
]1/2

and as t → ∞ t − ntm

σ
√

nt
→ −y

and lim
t→∞

P{Snt
> t} = Q(−y)

nt =
t

m
+ yσ

√

t/m3

lim
t→∞

P{Snt
> t} = lim

t→∞

P{N(t) < nt} = Q(−y)

P{N(t) < nt} = P

{

N(t) − t/m

σ
√

t/m3
< y

}

→ Q(−y) as t → ∞

or since P (y) = Q(−y) for normal distribution
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lim
t→∞

P

{

N(t) − t/m

σ
√

t/m3
< y

}

= P (y)

Therefore N(t) is asymptotically Normal with mean t/m

and variance σ2t/m3.

For Poisson process E[N(t)] = λt = t/m and V [N(t)] = λt = t/m;

for the exponential distribution, m = 1/λ, σ2 = 1/λ2

σ2t

m3
=

(1/λ)2t

(1/λ)3
= λt. Thus the results hold exactly for a Poisson Process.
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5.2 Renewal Function

Consider H(t) = E[N(t)].

H(t) is called Renewal Function. If pn(t) = P{N(t) = n}, then

H(t) =

∞
∑

n=0

npn(t).

Taking Laplace Transforms

H∗(s) =

∞
∑

n=0

np∗n(s), p∗n(s) =

∫

∞

0

e−stpn(t)dt
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Recall

p∗n(s) =
q∗(s)n − q∗(s)n+1

s

H∗(s) = 1

s

{
∑

∞

1
nq∗(s)n −

∑

∞

1
nq∗(s)n+1

}

= 1

s

{

q∗(s) + q∗(s)2 + q∗(s)3 + . . .
}

H∗(s) = q∗(s)/s(1 − q∗(s))

Note that if Fn(t) = P{Sn < t} where Sn = time to nth event, then

since Sn = T1 + T2 + . . . + Tn, F ∗

n(s) =
q∗n(s)

s
=

q∗(s)n

s
.

Therefore H(t) =
∞
∑

n=1

Fn(t)
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Suppose

q∗(s) = λ/λ + s

H∗(s) = q∗(s)/s(1 − q∗(s))

H∗(s) =
λ/λ + s

s(1 − λ

λ + s
)

=
λ

s2

⇒ H(t) = E[N(t)] = λt as L−1(
1

s2
) = t

We will show

H(t) = L−1{H∗(s)} =
t

m
+

σ2 − m2

2m2
+ o(1)

In general q∗(s) = E(e−st) = 1 − sm +
s2m2

2
+ O(s3)
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Substituting q∗(s) in H∗(s)

H∗(s) =
1

s2m
+

σ2 − m2

2m2s
+ O(1)

Note: Therefore taking inverse Laplace Transforms of H∗(s) results in

H(t) =
t

m
+

σ2 − m2

2m2
+ o(1)

o(1) means that o(1) refers to a function f(t) such that

limt→∞

f(t)

1
= 0, i.e. f(t) = K/tn n ≥ 1.
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5.3 Renewal Density Function and Related Theorems

Consider H(t)/t ∼= 1

m
+

(σ2 − m2)

2m2

1

t
.

It is clear that lim
t→∞

H(t)/t =
1

m

Furthermore, lim
t→∞

[H(t + a) − H(t)] ∼= t + a

m
− t

m
=

a

m

The above result is often referred to as Blackwell’s Theorem.

The derivative of H(t); i.e. h(t) = H ′(t) is called the

renewal density function.

Hence h(t) = lim
a→0

[H(t + a) − H(t)]/a

and lim
t→∞

h(t) = 1/m

223



The operable definition of h(t)dt is that it is the expected number of

events in the interval (t, t + dt) or equivalently the probability of a

renewal in (t, t + dt). Therefore for large t, it is a constant and is

equivalent to a Poison Process.

Renewal Equation

Recall that

h∗(s) = L{h(t)} = L{H ′(t)} = sH∗(s) − H(0).

Since E[N(0)] = H(0) = 0, we have

h∗(s) = s

[

q∗(s)

s(1 − q∗(s))

]

=
q∗(s)

1 − q∗(s)
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Hence we can write

h∗(s) = q∗(s) + q∗(s)h∗(s)

and on taking the inverse transform we have

h(t) = q(t) +

∫ t

0

q(τ)h(t − τ)dτ

The interpretation of the above integral equation is that an event takes

place in (t, t + dt) with probability h(t)dt. It could have been the first

event which has probability q(t)dt or a later event. In this latter case the

event preceeding the one in (t, t + dt) took place in (t − τ, t − τ + dt)

with probability h(t − τ)dt and the time to the next event is

τ < T ≤ τ + dτ with probability q(τ)dτ . Integrating over all possible

values of τ (0 to t) gives the above integral expression.
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Consider the expression W (t) =

∫ t

0

w(τ)h(τ)dτ

where w(t) is a non-negative function such that
∫

∞

0

w(τ)dτ < ∞.

Then as t → ∞ lim
t→∞

W (t) =
1

m

∫

∞

0

w(τ)dτ

The above is often called the key renewal theorem. An interpretation of
lim

t→∞

W (t) is that it is the expected value of a random variable(for large t)

in which a value w(τ) is observed at every event. For example, if the
event is an earthquake, the w may refer to the magnitude of the
earthquake on the Richter scale.

A more realistic application of the key renewal theorem is to approximate
W (t + a) − W (t) for large t by

W (t + a) − W (t) ∼= 1

m

∫ t+a

t

w(τ)dτ.
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5.4 Equilibrium Renewal Process

Suppose a renewal process is going on for a long time. It starts to be

observed at a point in chronological time which is designated as time 0.

Define T1 to be the time to the first event after time 0. It has a forward

recurrence time distribution qf (t) = Q(t)/m.

Then Sn = T1 + T2 + ... + Tn has a pdf fn(t) having the Laplace

transform

f∗

n(s) = q∗f (s)q∗(s)n−1 =
Q∗(s)q∗(s)n−1

m

=
[1 − q∗(s)]q∗

n−1

(s)

sm

This process is called an equilibrium renewal process.
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Since

p∗n(s) =
f∗

n(s) − f∗

n+1(s)

s

=
[1 − q∗(s)][q∗(s)n−1 − q∗(s)n]

s2m

He(t) = E[N(t)] =

∞
∑

n=1

npn(t)

H∗

e (s) =

∞
∑

1

np∗n(s) =

[

1 − q∗(s)

s2m

]

[1 + q∗(s) + q∗(s2) + . . . ]

=
1 − q∗(s)

s2m

1

1 − q∗(s)
=

1

s2m

and He(t) = E(N(t)) = t/m

Note: He(t2)−He(t1) =
t2 − t1

m
= He(t2 − t1)
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5.5 Appendix: Notes on Asymptotic Relations

1. Big “O” f(x) = O[g(x)]

f(x) is of the order of g(x) as x → a iff lim
x→a

f(x)

g(x)
< ∞ (bounded)

2. Little “o” f(x) = o[g(x)]

lim
x→a

f(x)

g(x)
= 0, f(x) becomes negligible compared with g(x) as x → a

3. ∼ f(x) ∼ g(x)

f(x) is asymptotically proportional to g(x) as x → a

iff lim
x→a

f(x)

g(x)
< ∞ and 6= 0

4. ' f(x) ' g(x),

f(x) is asymptotically = g(x) iff lim
x→a

f(x)

g(x)
= 1
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