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7.1. Introduction: Markov Chains

Consider a system which can be in one of a countable number of

states 1, 2, 3, . . . . The system is observed at the time

points n = 0, 1, 2, . . . .

Define Xn to be a random variable denoting the state of the system at

“time” n. Suppose the history of the system up to time n is:

{X0, X1, . . . , Xn}. The probability distribution of Xn+1 would

ordinarily depend on the past history; i.e.

P{Xn+1|X0, X1, . . . , Xn}.

The process is said to have the Markov property if

P{Xn+1|X0, X1, . . . , Xn} = P{Xn+1|Xn}
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P{Xn+1|X0, . . . , Xn} = P{Xn+1|Xn}

The stochastic process is called a Markov Chain. If the possible states are

denoted by integers, then we have

P{Xn+1 = j|Xn = i, Xn−1 = in−1, Xn−2 = in−2, . . . , X0 = i0}

= P{Xn+1 = j|Xn = i}

Define

pij(n) = P{Xn+1 = j|Xn = i}

If S represents the state space and is countable, then the Markov Chain is

called Time-Homogeneous if

pij(n) = pij for all i, j ∈ S and n ≥ 0.

We will only be dealing with Time Homogeneous Markov Chains.
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Note: Sometimes this process is referred to as a

Discrete Time Markov Chain (DTMC).

Define P = (pij).

If S has m states, then P = (pij) m ×m matrix.

P is often called the one-step transition probability matrix.

Definition: A matrix P = (Pij) is called stochastic if

(i) pij ≥ 0 i, j ∈ S

(ii)
∑

j∈S

pij =

m
∑

j=1

pij = 1 for all i ∈ S.
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X0 = initial state

ai = P{X0 = i} = Prob. of the initial state X0 = i.

The probabilities ai and P = (pij) completely determine the stochastic
process.

Examples

P{X0 = i0, X1 = i1} = P{X1 = i1|X0 = i0}P{X0 = i0}

= pi0i1 ai0

P{X0 = i0, X1 = i1, X2 = i2} = P{X0 = i0} · P{X1 = i1|X0 = i0}

· P{X2 = i2|X1 = i1}

= ai0pi0i1 pi1i2
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7.2. Examples

Example: Two States

Suppose a person can be in one of two states — “healthy” or “sick”. Let

{Xn} n = 0, 1, . . . refer to the state at time n where

Xn =







1 if healthy

0 if sick

Define P{Xn+1 = 0|Xn = 0} = α

P{Xn+1 = 1|Xn = 1} = β

Transition Matrix Transition Diagram
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Ex. Independent Events

Let {Xn} be iid with

P{Xn = k} = pk for k = 0, 1, . . .

and let the state space be S = {0, 1, 2, . . . }

pjk = P{Xn+1 = k|Xn = j} = P{Xn+1 = k} = pk

P =











p0 p1 p2 . . .

p0 p1 p2 . . .
...

...
...










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Example: Random Walk on Non-negative Real Line

Define {Zn} to be iid with pk = P{Zn = k} for k = 0, 1, 2, . . .

Define X0 = 0, Xn =
n

∑

k=1

Zk

Then {Xn} is a Markov Chain with state space S = {0, 1, 2, . . . };

P{Xn+1 = j|Xn = i} = P{Zn+1 = j − i} = pj−i

0 1 2 3 · · ·

p0 p1 p2 p3 · · ·

0 p0 p1 p2 · · ·

0 0 p0 p1 · · ·

0 0 0 p0 · · ·
...

0

1

2

3
...

P =
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Example: Random Walk (one step at a time)

P{Xn+1 = i + 1|Xn = i} = pi, P{Xn+1 = i + 1|Xn = j} = 0 for j 6= i

P{Xn+1 = i− 1|Xn = i} = qi, P{Xn+1 = i− 1|Xn = j} = 0 for j 6= i

P{Xn+1 = i | Xn = i} = ri = 1− pi − qi

State Space: S = {0, 1, 2, . . . }

(i.) q0 = 0 means that state 0 is reflecting barrier.

(ii.) If r0 = 1, then once in state 0 it can never leave.

(iii.) If pN = 0⇒ S = {0, 1, 2, . . . , N}

(iv.) If pN = 0 and rN = 1⇒ N is absorbing (rN = 0, N is

reflecting barrier.)
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Example: Gambler’s Ruin

Gamblers: A, B have a total of N dollars

Game: Toss Coin

If H ⇒ A receives $1 from B

T ⇒ B receives $1 from A

P (H) = p, P (T ) = q = 1− p

Xn = Amount of money A has after n plays

P{Xn+1 = Xn + 1|Xn} = p

P{Xn+1 = Xn − 1|Xn} = q

.....Game ends if Xn = 0 or Xn = N
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State space= {0, 1, 2, . . . , N}

0 1 2 3 · · · N − 2 N − 1 N

1 0 0 0 · · · 0 0 0
q 0 p 0 · · · 0 0 0

0 q 0 p · · · 0 0 0

0 0 0 0 · · · q 0 p

0 0 0 0 · · · 0 0 1

0

1

2

N − 1

N

...

Xn

Xn+1
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.............................................................................................
.........
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.............................................................................................
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�
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.............................................................................................
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.....3 · · ·←
→
p

q
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.............................................................................................
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p
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.............................................................................................
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1

Transition Diagram for

Gambler’s Ruin
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Example: Urn Models (Ehrenfest Urn Model)

Two urns: A, B each containing N balls (Balls may be red or white).

Experiment consists of picking one ball at a time from each urn at random

and placing them in the opposite urn.

Xn = no. of white balls in urn A after n repetitions. Assume

X0 = N (all white balls in A).

If Xn = i⇒ i white and N − i red in A

i red and N − i white in B

P{Xn+1 = i + 1|Xn = i} = P{white ball from B and red ball from A}

=

(

1−
i

N

)2

= pi,i+1 i 6= 0, N
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P{Xn+1 = i− 1|Xn = i} = P{white from A and red from B}

=

(

i

N

)2

= pi,i−1

P{Xn+1 = i|Xn = i} = P{white from A and B}

+ P{Red from A and B}

= 2

(

i

N

) (

1−
i

N

)

= pii
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Example: Branching Process

Xn = no. of individuals in nth generation beginning with

X0 = 1(1 individual)

Yi,n = no. of offspring of the ith person in the nth generation

Xn+1 = Y1,n + Y2,n + . . . + YXn,n =

Xn
∑

i=1

Yi,n

Assume {Yi,n} are iid random variables.

pij = P{Xn+1 = j|Xn = i} = P{
∑Xn

i=1 Yi,n = j|Xn = i}

= P{
∑i

r=1 Yr,n = j}

Process:{Xn} is called a branching process

How long does it take for a family to become extinct?

What is distribution of size in the nth generation?
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7.3. Marginal Distribution of Xn

Define a
(n)
j = P{Xn = j} =

∑

i∈S

P{Xn = j|X0 = i}P{X0 = i}

=
∑

i∈S

P{Xn = j|X0 = i}ai

p
(n)
ij = Prob. of going from i→ j in n steps

p
(n)
ij = n-step transition probabilities

Th. Chapman-Kolmogorov Equations

p
(n)
ij =

∑

r∈S

p
(k)
ir p

(n−k)
rj Chapman-Kolmogorov Equations

where k is a fixed integer 0 ≤ k ≤ n

262



Th. P (n) = (p
(n)
ij ) = Pn

Proof. P{X0 = j|X0 = i} =







1 if i = j

0 if i 6= j

⇒ P 0 = I . Also P 1 = P . Assume theorem is true for n = k. We will

show it is true for n = k + 1.

P (k+1) = P (k)P = P kP = P k+1

Th. a(n) = row vector of a
(n)
j = (a

(n)
1 , a

(n)
2 , . . . )

a(n) = aPn

Proof. a(n) = a(0)P (n) = aPn
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Urn Sampling (Continuation)

E(Xn|X0) =

X0
∑

i=0

iP{Xn = i|X0} Expected number of white

balls in urn A with n

draws given X0 = no. of

white balls in A at start.

= (0, 0, . . . , 1)P n





















0

1

2
...

X0




















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Suppose X0 = 10

n E(Xn|X0 = 10) n E(Xn|X0 = 10)

2 8.2 12 5.3

4 7.0 14 5.2

6 6.3 16 5.14

8 5.8 18 5.09

10 5.5 20 5.06
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Ex. Branching Process (Continuation)

mn = E(Xn), σ2
n = V arXn, m = E(Yi,n), σ2 = V (Yi, n)

mn = E(Xn) = E





Xn−1
∑

i=1

Yi,n−1



 = mE(Xn−1)

⇒ mn = m mn−1

mn = mn , m = E(Yi,n)

V ar(Xn|Xn−1) = V ar





Xn−1
∑

i=1

Yi,n



 = σ2Xn−1

Recall V arZ = EY V ar(Z|Y ) + V arY E(Z|Y )

In our example Z = Xn, Y = Xn−1

V ar(Xn|Xn−1) = V ar(

Xn−1
∑

1

Yi,n−1|Xn−1) = Xn−1σ
2, if Xn−1 fixed
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E(Xn|Xn−1) = E(
∑Xn−1

1 Yi,n−1|Xn−1) = Xn−1m

.̇. V arXn = σ2E(Xn−1) + V ar(Xn−1m)

σ2
n = σ2mn−1 + m2V arXn−1

σ2
n = σ2mn−1 + m2σ2

n−1

σ2
n = σ2mn−1 + m2σ2

n−1

mn = mn

Case 1: m = 1 (σ2
0 = 0)

σ2
n = σ2 + σ2

n−1

⇒ σ2
1 = σ2, σ2

2 = 2σ2, σ2
3 = 3σ2

σ2
n = nσ2 if m = 1
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Case 2: m 6= 1

σ2
n = σ2mn−1 + m2σ2

n−1

σ2
1 = σ2 (σ2

0 = 0)

σ2
2 = σ2m + m2σ2

1 = σ2m

[

m2 − 1

m− 1

]

σ2
3 = σ2m2 + m2σ2

2 = σ2m2 + m2

[

σ2m

(

m2 − 1

m− 1

)]

= σ2m2

[

m3 − 1

m− 1

]

...
...

σ2
n = σ2mn−1

[

mn − 1

m− 1

]

m 6= 1
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Use of Generating Functions

G(z) =

∞
∑

n=1

σ2
nzn (σ2

0 = 0)

σ2
n = σ2mn−1 + m2σ2

n−1

∞
∑

1

σ2
nzn = σ2

∞
∑

1

mn−1zn + m2
∞
∑

n=1

σ2
n−1z

n

G(z) = σ2z

∞
∑

n=1

(mz)n−1 + m2z

∞
∑

n=1

σ2
n−1z

n−1

G(z) = σ2z
1

1−mz
+ m2zG(z)

G(z)[1−m2z] = σ2z/(1−mz)

G(z) = σ2z/(1−m2z)(1−mz)
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G(z) = σ2z/(1−m2z)(1−mz)

= σ2z

{

∞
∑

r=0

(m2z)r

∞
∑

s=0

(mz)s

}

= σ2z

{

∞
∑

r=0

∞
∑

s=0

m2r+szr+s

}

, n = r + s 0 ≤ r ≤ n

= σ2z

∞
∑

n=0

znmn

n
∑

r=0

mr = σ2z

∞
∑

n=0

znmn

(

1−mn+1

1−m

)

= σ2

∞
∑

0

zn+1mn

(

1−mn+1

1−m

)

⇒ σ2
n+1 = σ2mn

(

mn+1
−1

m−1

)

or σ2
n = σ2mn−1

(

mn
−1

m−1

)

mn = mn

If m > 1, mn →∞ as n→∞

If m < 1, mn → 0 as n→∞

If m = 1, mn = m always
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Application: Nuclear Reactors

A neutron (0th generation) is introduced into a fissionable material. If it

hits a nucleus it will produce a random number of new neutrons

(1st generation). This process continues as each new neutron behaves like

the original neutron.

Xn = No. of neutrons after n collisions

mn = mn

If m > 1, each neutron produces on average more than one neutron and

reaction is explosive—(nuclear explosion or meltdown).

If m < 1, reaction eventually dies out.
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In nuclear power station, m > 1 to reach “hot stage”. Once hot,

moderator rods are inserted to remove neutrons and reduce m. Hence

reactor is controlled. The moderator rods are continually removed and

inserted to keep temperature in a given range. (Heat is converted to

electricity).

Application: Family Names

Consider only male offspring who will carry family name. If m < 1,

family name will eventually die out as mn → 0. Males in historical times

would keep marrying until a wife could produce a male heir.

i.e. P{Xn ≥ 1} = 1⇒ m ≥ 1.
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7.4 Appendix: Notes on Matrices: I

Let A : n× n matrix

xi : n× 1 vector

Eigenvalues:

|A− λI| = 0 Polynomial in λ of degree n. The eigenvalues

λ1, . . . , λn are the zeros of the polynomial.

Eigenvectors

If Axi = λixi i = 1, . . . , n then xi(n× 1) are the right eigenvectors

associated with λi.

If y′

iA = λiy
′

i i = 1, . . . , n then yi(n× 1) are the left eigenvectors

associated with λi.

⇒ x′

iyj = 0, i 6= j
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Proof: Axi = λixi, y′

jAxi = λjy
′

jxi = λiy
′

jxi

If y′

jxi 6= 0, then λi = λj which is false. Hence y′

jxi = 0.

Scale xi, and yi so that x′

iyi = 1

Define

Xn×n = [x1, x2, . . . , xn]

Y n×n =

















y′

1

y′

2

...

y′

n

















Therefore AX = XD and Y A = DY where D =diag(λ1, . . . , λn). We

can write A = XDX−1 = Y −1DY . Hence X = Y −1.

274



Since

A = XDX−1

A2 = XDX−1XDX−1 = XD2X−1

Am = XDmX−1, Dm = diag (λm
1 , . . . , λm

n )

Idempotent Decomposition Am =

n
∑

i=1

λm
i xiy

′

i =

n
∑

i=1

λm
i Ei

Ei = xiy
′

i and E2
i = Ei, EiEj = 0 i 6= j

If A is stochastic 1′A = 1′ (columns add to unity), then λ = 1 is the
largest eigenvalue.

P =

n
∑

1

λiEi, Pm =

n
∑

1

λm
i Ei

as m→∞, lim
m→∞

Pm = E1 = y1x
′

1
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