![]() |
![]() |
![]() |
front |1 |2 |3 |4 |5 |6 |7 |8 |9 |10 |11 |12 |13 |14 |15 |16 |17 |18 |19 |20 |21 |22 |23 |24 |25 |26 |27 |28 |29 |review |
The state of
equilibrium (where R=1) can help us explore the immunisation level required for the
eradication of an infectious agent. From the definition of R (see previous slide),
it is: In the state of equilibrium, it is: If we solve for (I/N)eq, we get: On reflection, we realise that (I/N)eq is the necessary proportion of immunes in the population in order to have equilibrium (R=1). In other words, if the proportion of immunes were higher than this, R would be smaller than 1, and the microorganism would be eventually eradicated. If this level of population immunity is achieved by mass vaccination, we can consider (I/N)eq as the critical proportion of vaccination level above which we would eventually accomplish eradication of the microorganism (PC). Therefore, PC = 1 - (1/R0). |